108 research outputs found

    Design, fabrication, and testing of micromachined silicone rubbermembrane valves

    Get PDF
    Technologies for fabricating silicone rubber membranes and integrating them with other processes on silicon wafers have been developed. Silicone rubber has been found to have exceptional mechanical properties including low modulus, high elongation, and good sealing. Thermopneumatically actuated, normally open, silicone rubber membrane valves with optimized components have been designed, fabricated, and tested. Suspended silicon nitride membrane heaters have been developed for low-power thermopneumatic actuation. Composite silicone rubber on Parylene valve membranes have been shown to have low permeability and modulus. Also, novel valve seats were designed to improve sealing in the presence of particles. The valves have been extensively characterized with respect to power consumption versus flow rate and transient response. Low power consumption, high flow rate, and high pressure have been demonstrated. For example, less than 40 mW is required to switch a 1-slpm nitrogen flow at 33 psi. Water requires dose to 100 mW due to the cooling effect of the liquid

    A practical thermopneumatic valve

    Get PDF
    Previously, we reported a thermopneumatic silicone rubber membrane valve [1997]. This valve combined thermopneumatic actuation with a low modulus silicone rubber membrane. However, the leakage of the working fluid through the membrane rendered the valve unusable in a day or two. Here, we present extensive optimization and characterization of a redesigned valve structure. This new design has a suspended membrane heater optimized for low power consumption, a composite silicone rubber on Parylene membrane that exhibits low permeability and modulus, and a novel valve seat designed to improve sealing in the presence of particles. The valve has been extensively characterized with respect to power consumption vs. flow rate and transient response. Very low power consumption has been demonstrated. For example, less than 40 mW is required to switch a one slpm nitrogen flow at 33 psi. Water requires close to 100 mW due to the cooling effect of the liquid. The previously reported valve required more than 280 mW to switch a similar air flow

    A thermopneumatic microfluidic system

    Get PDF
    A self-contained planar microfluidic system using thermopneumatic actuation has been demonstrated. Using a novel suspended silicon island heater fabricated by deep reactive ion etching (DRIE), and a precision machined acrylic fluidic substrate with a matching silicone rubber membrane, a self-contained system of channels, valves, and a pump has been demonstrated using air as a working fluid

    Investigating differences in the ability of XplA/B-containing bacteria to degrade the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)

    Get PDF
    The xenobiotic hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a toxic explosive and environmental pollutant. This study examines three bacterial species that degrade RDX, using it as a sole source of nitrogen for growth. Although isolated from diverse geographical locations, the species contain near identical copies of genes encoding the RDX-metabolising cytochrome P450, XplA and accompanying reductase, XplB. Sequence analysis indicates a single evolutionary origin for xplA and xplB as part of a genomic island, which has been distributed around the world via horizontal gene transfer. Despite the fact that xplA and xplB are highly conserved between species, Gordonia sp. KTR9 and Microbacterium sp. MA1 degrade RDX more slowly than Rhodococcus rhodochrous 11Y. Both Gordonia sp. KTR9 and Microbacterium sp. MA1 were found to contain single base-pair mutations in xplB which, following expression and purification, were found to encode inactive XplB protein. Additionally, the Gordonia sp. KTR9 XplB was fused to glutamine synthetase, which would be likely to sterically inhibit XplB activity. Although the glutamine synthetase is fused to XplB and truncated by 71 residues, it was found to be active. Glutamine synthetase has been implicated in the regulation of nitrogen levels; controlling nitrogen availability will be important for effective bioremediation of RDX

    Codon usage bias and tRNA over-expression in Buchnera aphidicola after aromatic amino acid nutritional stress on its host Acyrthosiphon pisum

    Get PDF
    Codon usage bias and relative abundances of tRNA isoacceptors were analysed in the obligate intracellular symbiotic bacterium, Buchnera aphidicola from the aphid Acyrthosiphon pisum, using a dedicated 35mer oligonucleotide microarray. Buchnera is archetypal of organisms living with minimal metabolic requirements and presents a reduced genome with high-evolutionary rate. Codonusage in Buchnera has been overcome by the high mutational bias towards AT bases. However, several lines of evidence for codon usage selection are given here. A significant correlation was found between tRNA relative abundances and codon composition of Buchnera genes. A significant codon usage bias was found for the choice of rare codons in Buchnera: C-ending codons are preferred in highly expressed genes, whereas G-ending codons are avoided. This bias is not explained by GC skew in the bacteria and might correspond to a selection for perfect matching between codon–anticodon pairs for some essential amino acids in Buchnera proteins. Nutritional stress applied to the aphid host induced a significant overexpression of most of the tRNA isoacceptors in bacteria. Although, molecular regulation of the tRNA operons in Buchnera was not investigated, a correlation between relative expression levels and organization in transcription unit was found in the genome of Buchnera

    Translational Selection Is Ubiquitous in Prokaryotes

    Get PDF
    Codon usage bias in prokaryotic genomes is largely a consequence of background substitution patterns in DNA, but highly expressed genes may show a preference towards codons that enable more efficient and/or accurate translation. We introduce a novel approach based on supervised machine learning that detects effects of translational selection on genes, while controlling for local variation in nucleotide substitution patterns represented as sequence composition of intergenic DNA. A cornerstone of our method is a Random Forest classifier that outperformed previous distance measure-based approaches, such as the codon adaptation index, in the task of discerning the (highly expressed) ribosomal protein genes by their codon frequencies. Unlike previous reports, we show evidence that translational selection in prokaryotes is practically universal: in 460 of 461 examined microbial genomes, we find that a subset of genes shows a higher codon usage similarity to the ribosomal proteins than would be expected from the local sequence composition. These genes constitute a substantial part of the genome—between 5% and 33%, depending on genome size—while also exhibiting higher experimentally measured mRNA abundances and tending toward codons that match tRNA anticodons by canonical base pairing. Certain gene functional categories are generally enriched with, or depleted of codon-optimized genes, the trends of enrichment/depletion being conserved between Archaea and Bacteria. Prominent exceptions from these trends might indicate genes with alternative physiological roles; we speculate on specific examples related to detoxication of oxygen radicals and ammonia and to possible misannotations of asparaginyl–tRNA synthetases. Since the presence of codon optimizations on genes is a valid proxy for expression levels in fully sequenced genomes, we provide an example of an “adaptome” by highlighting gene functions with expression levels elevated specifically in thermophilic Bacteria and Archaea

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & NemĂ©sio 2007; Donegan 2008, 2009; NemĂ©sio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Geosciences Roadmap for Research Infrastructures 2025 - 2028 by the Swiss Geosciences Community

    Get PDF
    This roadmap is the product of a grassroots effort by the Swiss Geosciences community. It is the first of its kind, outlining an integrated approach to research facilities for the Swiss Geosciences. It spans the planning period 2025-2028. Swiss Geoscience is by its nature leading or highly in-volved in research on many of the major national and global challenges facing society such as climate change and meteorological extreme events, environmental pol-lution, mass movements (land- and rock-slides), earth-quakes and seismic hazards, global volcanic hazards, and energy and other natural resources. It is essential to under- stand the fundamentals of the whole Earth system to pro-vide scientific guidelines to politicians, stakeholders and society for these pressing issues. Here, we strive to gain efficiency and synergies through an integrative approach to the Earth sciences. The research activities of indivi- dual branches in geosciences were merged under the roof of the 'Integrated Swiss Geosciences'. The goal is to facilitate multidisciplinary synergies and to bundle efforts for large research infrastructural (RI) requirements, which will re-sult in better use of resources by merging sectorial acti- vities under four pillars. These pillars represent the four key RIs to be developed in a synergistic way to improve our understanding of whole-system processes and me- chanisms governing the geospheres and the interactions among their components. At the same time, the roadmap provides for the required transition to an infrastructure adhering to FAIR (findable, accessible, interoperable, and reusable) data principles by 2028.The geosciences as a whole do not primarily profit from a single large-scale research infrastructure investment, but they see their highest scientific potential for ground-break-ing new findings in joining forces in establishing state-of-the-art RI by bringing together diverse expertise for the benefit of the entire geosciences community. Hence, the recommendation of the geoscientific community to policy makers is to establish an integrative RI to support the ne- cessary breadth of geosciences in their endeavor to ad-dress the Earth system across the breadth of both temporal and spatial scales. It is also imperative to include suffi-cient and adequately qualified personnel in all large RIs. This is best achieved by fostering centers of excellence in atmospheric, environmental, surface processes, and deep Earth projects, under the roof of the 'Integrated Swiss Geosciences'. This will provide support to Swiss geo-sciences to maintain their long standing and internatio- nally well-recognized tradition of observation, monitor-ing, modelling and understanding of geosciences process-es in mountainous environments such as the Alps and beyond
    • 

    corecore